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The phenomena of natural convection within a trapezoidal enclosure filled with porous matrix for line-
arly heated vertical wall(s) with various inclination angles u has been studied numerically. A penalty
finite element analysis with bi-quadratic elements is used for solving the Navier–Stokes and energy bal-
ance equations. Wide range of parameters such as Rayleigh number, Rað103

6 Ra 6 106Þ, Prandtl number,
Prð0:026 6 Pr 6 1000Þ and Darcy number, Dað10�5

6 Da 6 10�3Þ have been used. Numerical results are
presented in terms of streamlines, isotherms and Nusselt numbers. It has been found that secondary
and tertiary circulations appear at the bottom half of the cavity for u = 30� and u = 0� with
Pr ¼ 0:026 and 0:7; Da ¼ 10�3 and Ra ¼ 106 for linearly heated side walls. On the other hand, for linearly
heated left wall and cold right wall, multiple circulations occur near the top portion of the cavity. For lin-
early heated side wall, the local Nusselt number ðNubÞ shows sinusoidal behavior with distance at high
Darcy number for all tilt angles whereas increasing trend in Nus is observed in the upper half of the side
wall for all tilt angles. For linearly heated left wall with cold right wall, increasing trend in Nub is observed
irrespective to Da and Pr and Nub is even larger for higher Da. Increasing trend is also observed in Nul for
all tilt angles for linearly heated left wall. Due to discontinuity in right corner, Nur first decreases and
thereafter that increases for Y P 0:2. The average Nusselt number remains constant up to Ra ¼ 106 at
low Da for Pr = 0.026 whereas for Pr = 1000 and high Ra, that starts to decrease for bottom wall whereas
that starts to increase for side walls due to convection dominant effect at high Da. In general, the average
Nusselt number increases with the increase of Da and Ra for higher Da.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in closed cavities has occupied the center
stage in many fundamental heat transfer analysis and has attracted
many researchers’ interest [1–11]. Processes involving natural con-
vection in enclosures are important for rectangular and
non-rectangular enclosures. However, the number of studies on
natural convection in porous non-rectangular geometries is very
limited. In this context, buoyancy driven phenomena in porous
media are actively under investigation. Natural convection flows
are highly non-trivial as the process depends on several parame-
ters among which the geometry concerned and thermophysical
characteristics of the fluid are the most important. Also, various
applications depend on the product specification, shape of the con-
tainer and heating characteristics. Numerical modeling can offer a
way to reduce expensive experimental costs.
ll rights reserved.
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A good amount of the literature is available on the convection
patterns in enclosures filled with porous media (Bejan and Poulika-
kos [12], Nield and Bejan [13], Ingham and Pop [14] and Al-Amiri
[15]). Natural convection in an enclosure filled with two layers of
porous media are investigated numerically by Merrikh and
Mohamad [16]. Constant heat flux is imposed on the left vertical
wall and the right wall is assumed to be at a low temperature.
The focus of the work is on the validity of the Darcy model. Chen
et al. [17] considered Darcy–Brinkman–Forchheimer extended
model to examine free convection inside a porous cavity. This
model has been initially introduced by Brinkman [18] in order to
account for the transition from Darcy flow to highly viscous flow,
in the limit of high permeability. Darcy–Forchheimer model is
based on the effect of inertia and viscous forces in the porous med-
ia. This model was used by Poulikakos and Bejan [19] and Lauriat
and Prasad [20] in order to investigate the natural convection in
a vertical enclosure filled with a porous medium. The extended
Darcy–Forchheimer model was also used to describe resistance
to flow through the porous baffles by Miranda and Anand [21].
Al-Amiri et al. [22] investigated the wall heat conduction effect
on the natural-convection heat transfer within a two-dimensional
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Nomenclature

Da Darcy number
g acceleration due to gravity (m s�2)
k thermal conductivity (W m�1 K�1)
H height of the trapezoidal cavity (m)
Nu local Nusselt number
p pressure (Pa)
P dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
T temperature (K)
Th temperature of hot bottom wall (K)
Tc temperature of cold inclined wall (K)
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x-coordinate
Y dimensionless distance along y-coordinate

Greek symbols
a thermal diffusivity (m2 s�1)
b volume expansion coefficient (K�1)
c penalty parameter
u angle of inclination
h dimensionless temperature
m kinematic viscosity (m2 s�1)
q density (kg m�3)
U basis functions
w streamfunction

Subscripts
b bottom wall
l left wall
r right wall
s side wall
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cavity, which is filled with a fluid-saturated porous medium and
their study was based on Forchheimer–Brinkman-extended Darcy
model.

There are extensive studies available in the literature for natural
convection in various rectangular porous cavities [23–26]. Varol
et al. [24] have investigated numerically the steady natural convec-
tion flow through a fluid-saturated porous medium in a rectangu-
lar enclosure with a sinusoidal varying temperature profile on the
bottom wall. They found that the heat transfer rate increases with
increasing of amplitude of the sinusoidal temperature function and
decreases with increasing aspect ratio. Multiple cells are observed
in the cavity for all values of the parameters considered. Kim et al.
[25] investigated numerically steady-state buoyant convection in a
rectangular cavity, partially filled with a fluid-saturated porous
medium with spatially uniform internal heat generation. Chang
and Yang [26] analyzed numerically the transient flow field and
heat transfer behavior of cold water in a rectangular enclosure
filled with a porous medium. This result shows that as time in-
creases, the heat transfer rate on the high-temperature surface de-
creases and that on the low-temperature surface increases.

Recent literatures also studied various complex situations in
porous medium [27–33]. Waite and Amin [27] studied heat trans-
fer and fluid flow mechanisms of two-phase fluid in porous enclo-
sure with heated side walls. Kiwan and Alzahrany [28] have
studied the steady-state, laminar, axisymmetric, natural convec-
tion heat transfer in the annulus between two concentric vertical
cylinders using porous inserts. A finite volume method is used to
solve numerically the sets of governing equations. Natural convec-
tion in an isosceles triangular enclosure filled with a porous matrix
has been studied numerically with finite element method by Basak
et al. [29]. A numerical investigation of natural convection heat
transfer within a two-dimensional, horizontal annulus that is par-
tially filled with a fluid-saturated porous medium has been carried
out by Khanafer et al. [30]. Bera et al. [31] studied double-diffusive
natural convective flow within a rectangular enclosure for an
anisotropic porous medium using a non-Darcy extension. The re-
sults indicate that permeability orientation angle has a significant
effect on the flow rate and, consequently, on the heat and mass
transfer. Slimi et al. [32] investigated numerically coupled fluid
flow and heat transfer by transient natural convection and thermal
radiation in a vertical channel opened at both ends and filled with a
fluid-saturated porous medium. Marcondes et al. [33] analyzed the
effect of variable porosity on the heat transfer by natural convec-
tion in a cavity filled with porous medium. The hydrodynamic field
in the porous medium is modeled based on the general model ob-
tained by Brinkman and Forchheimer terms.

A few investigations on natural convection within trapezoidal
enclosures have been carried out by earlier researchers [34–38].
Varol et al. [34] studied buoyancy-driven flow and heat transfer
in an inclined trapezoidal enclosure filled with a fluid-saturated
porous medium heated and cooled from inclined side walls. Their
results show that inclination angle of the trapezoidal enclosure is
more influential on heat transfer and flow strength than the influ-
ence due to the side wall inclination angle. Peric [35] studied nat-
ural convection in a trapezoidal cavities using control volume
method and observed the convergence of results for grid indepen-
dent solutions. Kuyper and Hoogendoorn [36] investigated laminar
natural convection flow in trapezoidal enclosures to study the
influence of the inclination angle on the flow and also the depen-
dence of the average Nusselt number on the Rayleigh number.
Thermosolutal heat transfer within trapezoidal cavity heated at
the bottom and cooled at the inclined top part was investigated
by Boussaid et al. [37]. The convective heat transport equation
was solved by Alternating Direction Implicit (ADI) method com-
bined with a fourth-order compact Hermitian method. Baytas
and Pop [38] have studied natural convection on trapezoidal por-
ous enclosure. Although a few studies of convection heating pat-
tern within trapezoidal containers appear in the literature, no
attempt has been made for the detailed flow and thermal analysis
for trapezoidal porous enclosures with various inclination angles
(as seen in Fig. 1a–c) in presence of various realistic thermal
boundary conditions on side walls. The overall assessment of heat
transfer rate via local and average Nusselt numbers at various
walls of porous containers is important and detailed analysis has
been carried out in this work. As a step towards the eventual devel-
opment on natural convection flows within closed enclosures, it is
interesting to pursue for a complete understanding of heat transfer
rates for many engineering applications such as cooling of com-
puter systems and other electronic equipments.

The present study deals with the natural convection within por-
ous trapezoidal enclosures where the bottom wall is uniformly
heated and vertical wall(s) are linearly heated or cooled whereas
the top wall is well insulated. The effect of geometry has been illus-
trated for various angle of the side wall varying within 0–90�. In
the current study, Galerkin finite element method with penalty
parameter has been used to solve the nonlinear coupled partial
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Fig. 1. Schematic diagram of the physical system for (a) u = 45�, (b) u = 30� and (c) u = 0�.
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differential equations governing flow and temperature fields for
both uniform and sinusoidally varying temperature distribution
prescribed at side walls. Non-orthogonal grid generation has been
done with iso-parametric mapping [39,40]. The momentum trans-
fer in the porous medium is based on the Darcy–Forchheimer mod-
el with inertia term being neglected. Numerical results are
obtained to display the circulations and temperature distributions
within the trapezoidal enclosure and the heat transfer rate for both
the walls in terms of local and average Nusselt numbers.

2. Mathematical formulation

Let us consider a trapezoidal cavity, filled with a porous med-
ium, with the vertical walls inclined at an angle u = 45�, 30� and
0� with y-axis as seen in Fig. 1(a)–(c), respectively. The velocity
boundary conditions are considered as no-slip on solid boundaries.
The liquid material is considered as incompressible, Newtonian
and the flow is assumed to be laminar. For the treatment of the
buoyancy term in the momentum equation, Boussinesq approxi-
mation is employed for equation of the vertical component of
velocity to account for the variations of density as a function of
temperature, and to couple in this way the temperature field to
the flow field. Further, it is assumed that the temperature of the
fluid phase is equal to the temperature of the solid phase every-
where in the porous body and local thermal equilibrium (LTE) is
applicable in the present investigation [13]. Also, a velocity square
term could be incorporated in the momentum equations to model
the inertia effect which is more important for non-Darcy effect on
the convective boundary layer flow over the surface of a body
embedded in a high porosity media. However, this term has been
neglected in the present study because this study involves the nat-
ural convection flow in a cavity filled with a porous medium. Under
these assumptions and following the earlier work [41] with the
Forchheimer’s inertia term being neglected, the governing equa-
tions for steady two-dimensional natural convection flow in the
porous cavity using conservation of mass, momentum and energy
in dimensionless form can be written as:

oU
oX
þ oV

oY
¼ 0; ð1Þ

U
oU
oX
þ V

oU
oY
¼ � oP

oX
þ Pr

o2U

oX2 þ
o2U

oY2

 !
� Pr

Da
U; ð2Þ
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where

X ¼ x
H
; Y ¼ y

H
; U ¼ uH

a
; V ¼ vH

a
;

P ¼ pH2

qa2 ; h ¼ T � Tc

Th � Tc
; Pr ¼ m

a
; Ra ¼ gbðTh � TcÞL3

ma
;

ð5Þ

with following boundary conditions:

U¼ 0; V ¼ 0; h¼1 8Y ¼ 0; 06X61;
U¼ 0; V ¼ 0; h¼1�Y 8X cosðuÞþY sinðuÞ¼0; 06Y 61;
U¼ 0; V ¼ 0; h¼1�Y or 0 8X cosðuÞ�Y sinðuÞ¼ cosðuÞ; 06Y 61;

U¼ 0; V ¼ 0;
oh
oY
¼0 8Y ¼1; �tanðuÞ6X61þ tanðuÞ:

ð6Þ
3. Solution procedure

The momentum and energy balance equations [Eqs. (2)–(4)] are
solved using the Galerkin finite element method. The continuity
equation [Eq. (1)] will be used as a constraint due to mass conser-
vation and this constraint may be used to obtain the pressure dis-
tribution. In order to solve Eqs. (2) and (3), we use the penalty
finite element method where the pressure P is eliminated by a pen-
alty parameter c and the incompressibility criteria given by Eq. (1)
results in

P ¼ �c
oU
oX
þ oV

oY

� �
: ð7Þ

The continuity equation [Eq. (1)] is automatically satisfied for
large values of c. Typical values of c that yield consistent solutions
are 107. Using Eq. (7), the momentum balance equations [Eqs. (2)
and (3)] reduce to
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þ V

oU
oY
¼ c

o

oX
oU
oX
þ oV

oY

� �
þ Pr

o2U

oX2 þ
o2U

oY2

 !
� Pr

Da
U; ð8Þ

and
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ð9Þ

The system of equations [Eqs. (4), (8) and (9)] with boundary con-
ditions [Eq. (6)] are solved using Galerkin finite element method
[39]. Since the solution procedure is explained in an earlier work
[23], the detailed description is not included in this paper. The
numerical solutions are obtained in terms of the velocity compo-
nents ðU;VÞ and streamfunction (w) is evaluated using the rela-
tionship between the streamfunction (w) and the velocity
components [42], where the streamfunction (w) is defined in the
usual way as U ¼ ow

oY and V ¼ � ow
oX. It may be noted that, the posi-

tive sign of w denotes anti-clockwise circulation and the clockwise
circulation is represented by the negative sign of w. The no-slip
condition is valid at all boundaries as there is no cross flow, hence
w ¼ 0 is used for the boundaries. For steady flows, streamlines are
equivalent to the paths followed by the individual particles in the
fluid.

The heat transfer coefficient in terms of the local Nusselt num-
ber (Nu) is defined by
Nu ¼ � oh
on
; ð10Þ

where n denotes the normal direction on a plane. The local Nusselt
numbers at bottom wall ðNubÞ, left wall ðNulÞ and right wall ðNurÞ
are defined as

Nub ¼
X9

i¼1

hi
oUi

oY
; ð11Þ

Nul ¼
X9

i¼1

hi cos u
oUi

oX
þ sin u

oUi

oY

� �
; ð12Þ

and

Nur ¼
X9

i¼1

hi � cos u
oUi

oX
þ sin u

oUi

oY

� �
: ð13Þ

The average Nusselt numbers at the bottom, left and right walls are

Nub ¼
R 1

0 Nub dX

Xj10
¼
Z 1

0
Nub dX; ð14Þ

Nul ¼ cosu
Z 1

cosu

0
Nul ds1; ð15Þ

and

Nur ¼ cosu
Z 1

cosu

0
Nur ds2; ð16Þ

where ds1; ds2 are the small elemental length along the left and
right walls, respectively.
4. Results and discussion

4.1. Numerical tests

The computational domain consists of 20 � 20 bi-quadratic
elements which correspond to 41 � 41 grid points in Cartesian
co-ordinate system and grid generation with iso-parametric
mapping has been discussed in earlier work [43]. The bi-qua-
dratic elements with lesser number of nodes smoothly capture
the non-linear variations of the field variables which are in con-
trast with finite difference solution available in the literature
[38]. Numerical solutions are obtained for various values of
Rað103—106Þ; Prð0:026— 1000Þ and Dað10�5—10�3Þ with uni-
formly heated bottom wall in presence of either linearly heated
side walls or linear heated left wall with cooled right wall in
presence of adiabatic top wall. It may be noted that the jump
discontinuity in Dirichlet type of wall boundary conditions at
the right corner point (see Fig. 1) corresponds to computational
singularity. In particular, the singularity at the right corner of the
bottom wall needs special attention.

To ensure the convergence of the numerical solution to the ex-
act solution, the grid sizes have been optimized and simulation re-
sults are found to be independent of grid size. The grid size
dependent effect upon the Nusselt numbers (local and average)
due to temperature discontinuity at the corner point tends to in-
crease as the mesh spacing at the corner is reduced. One of the
ways for handling the problem is assuming the average tempera-
ture of the two walls at the corner and keeping the adjacent
grid-nodes at the respective wall temperatures. Alternatively,
based on earlier work by Ganzarolli and Milanez [44], once any
corner formed by the intersection of two differentially heated
boundary walls is assumed at the average temperature of the adja-
cent walls, the optimal grid size obtained for each configuration
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corresponds to the mesh spacing over which further grid refine-
ments lead to grid invariant results in both heat transfer rates
and flow fields.

In the current investigation, Gaussian quadrature based finite
element method provides the smooth solutions at the interior do-
main including the corner regions as evaluation of residual de-
pends on interior Gauss points and thus the effect of corner
nodes is less pronounced in the final solution. The present finite
element approach offers special advantage on evaluation of local
Nusselt number at the bottom and side walls as the element basis
functions are used to evaluate the heat flux.

In order to assess the accuracy of the numerical procedure,
computations are carried out on 20 � 20 bi-quadratic elements
for a square domain ðu ¼ 0�Þ filled with air ðPr ¼ 0:71Þ subjected
to hot left wall and cold right wall in presence of insulated horizon-
tal walls at Ra ¼ 105 and the results are in well agreement with
previous work [45]. It is found that the average Nusselt number
ðNuÞ based on current work is 4.5–4.6 whereas Nu ¼ 4:52 was ob-
tained in the previous work [45].

4.2. Isotherms and streamlines: linearly heated side walls

Figs. 2–6 illustrate the isotherms and streamlines for various
Ra ¼ 103—106; Da ¼ 10�5—10�3 with Pr ¼ 0:026—1000 in pres-
ence of uniformly heated bottom wall and linearly heated side
walls. As expected due to linearly heated vertical walls and uni-
formly heated bottom wall, fluid rise up from the middle portion
of the bottom wall and flow down along the two vertical walls
forming two symmetric rolls with clockwise and anticlockwise
rotations inside the cavity. Results indicate that the fluid circula-
tions and isotherms are strongly dependent on Darcy number.

Fig. 2 displays the temperature and streamfunction contours
for Da ¼ 10�5 and Ra ¼ 106 with Pr = 0.026. In this case, intensity
of the flow is very weak as observed from streamfunction con-
tours. Consequently, the temperature contours are smooth and
monotonic illustrating that heat transfer is primarily due to con-
duction. Isotherms with h = 0.1–0.7 occur symmetrically near the
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Fig. 2. Isotherms and streamlines for linearly heated side walls with Pr ¼ 0:026; Da ¼
clockwise flows are shown via negative and positive signs of streamfunctions, respectiv
side walls of the enclosure for u = 45� (Fig. 2a). The other iso-
therms with h P 0:8 are smooth curves symmetric with respect
to vertical symmetric line at the center. The maximum value of
streamfunction is 0.21. But, for u = 30�, the isotherms with
h = 0.1–0.6 occur symmetrically near the side walls of the enclo-
sure (Fig. 2b) whereas h P 0:7 are smooth curves symmetric
with respect to vertical symmetric line. The maximum value of
streamfunction is found to be 0.185. For square cavity ðu ¼ 0�Þ,
h = 0.1–0.3 is symmetric along the side walls and h P 0:4 are
smooth curves symmetric with respect to the vertical symmetric
line and the maximum value of streamfunction is 0.082 (Fig. 2c).
It is observed that the intensity of circulation increases with the
angle and larger temperature gradient is observed near the side
walls with the increase in u.

Fig. 3 shows the temperature and streamfunction contours for
Da ¼ 10�4 and Ra ¼ 106 with Pr = 0.026. The convection starts to
play a dominant role and the isotherms are gradually pushed to-
wards the side walls. It is observed that isotherms with h 6 0.8
are pushed towards the side walls whereas temperature contours
with h P 0:9 occur symmetrically for u = 45�. The maximum value
of streamfunction is found to be 2.3 (see Fig. 3a). For u = 30�, the
isotherms with h 6 0.8 are shifted towards the side walls and
h P 0:9 are continuous curves (Fig. 3b). It may be noted that the
maximum value of streamfunction is 2.35. For square cavity, the
isotherms with h 6 0.5 are pushed towards the side walls whereas
h P 0:6 contours occur symmetrically with respect to the vertical
symmetric line and the maximum value of streamfunction is
1.85 (Fig. 3c).

As Da increases to 10�3, the strength of the convection increases
and the critical Rayleigh number for the conduction dominant
mode is found as Ra ¼ 6� 104 for all u’s. It may be noted that con-
duction is dominant below the critical Ra and above the critical Ra,
the convection becomes dominant mode of heat transfer. At the
onset of convection, the isotherms get distorted and move towards
the side walls. Note that, the critical value of Ra has been obtained
from asymptotes of average Nusselt number vs. Rayleigh number
plot.
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It is observed that the flow is strongly dependent on Ra for
Da ¼ 10�3. For Da ¼ 10�3 and Ra ¼ 106, the circulation near the
central regimes become stronger and consequently, the isotherms
with h 6 0.8 for u = 45�, h 6 0.7 for u = 30� and h 6 0:5 for u ¼ 0�

are shifted towards the side walls (see Fig. 4). The intensity of flow
circulations for Pr = 0.026, Da ¼ 10�3 is represented with jwjmax ¼ 9
for u = 45�, jwjmax ¼ 8:5 for u = 30� and jwjmax ¼ 6:6 for u = 0�.

The greater circulation in each half of the box follows a progres-
sive wrapping around the centers of rotation, and a more and more
pronounced compression of isotherms towards the boundary sur-
faces of the enclosures occurs. The top portions of side walls are
found to be cooled as the side walls are linearly heated. It is inter-
esting to observe that the isotherms are highly compressed near
the top portions whereas the isotherms are largely dispersed near
the bottom portion of side walls and the bottom wall. The large
volume of the hot fluid move to the upper regime and a very small
regime of the cold section at the side wall receives large amount of
heat from the high volume of hot fluid moving from bottom. It is
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also interesting to observe that the central regime of the bottom
wall corresponds to smallest temperature gradient due to
enhanced convection as seen in Fig. 4a–c. It is interesting to note
that secondary and tertiary circulations appear at the bottom half
of the cavity for u = 30� and u = 0�. The secondary circulations
pushed the primary circulations towards the upper part of the cav-
ity due to enhanced convection from the hot lower half of the cav-
ity and hot fluid recirculates along the corner of the bottom wall
due to secondary circulations. The bottom wall and associated cor-
ner regimes show multiple circulations for u = 0� as seen as in
Fig. 4c and thus isotherms are found to be non-monotonic in that
regime. In addition, the isotherms are also found to be compressed
near the central regime of the bottom wall due to strong secondary
circulations for u = 0�. The number of secondary circulations is
found to be also dependent on tilt angle and therefore, the tilt an-
gle plays a significant role on thermal mixing within the fluid. In
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fact, with similar parameter values, the secondary circulations dis-
appear for tilt angle, u > 30�.

The effect of various Prandtl numbers on isotherms and stream-
lines are shown in Figs. 4–6. The isotherms with h 6 0.7 for u = 45�,
h 6 0.6 for u = 30� and h 6 0:5 for u = 0� are compressed towards
the side walls for Pr = 0.026 and 0.7 (Figs. 4 and 5). The intensity
of flow circulations is represented with jwjmax ¼ 10:3 for u = 45�,
jwjmax ¼ 9:2 for u = 30�, jwjmax ¼ 8 for u = 0� for Pr ¼ 0:7 whereas
the intensity of flow circulations is represented with jwjmax ¼ 9
for u = 45�, jwjmax ¼ 8:5 for u = 30� and jwjmax ¼ 6:6 for u = 0� for
Pr = 0.026. It is also observed that, secondary circulation cells ap-
pear at the bottom half of the cavity which pushed the primary cir-
culation cell towards the center of the cavity for Pr = 0.026 (Fig. 4c).
As Pr increases to 0.7, the secondary circulation cell becomes larger
and the intensity of secondary circulations is found to be enhanced
(Fig. 5c).

Fig. 6 demonstrates that higher Pr reduces the strength of sec-
ondary circulations and simultaneously increases the strength of
primary circulations. The secondary circulation disappears for
u P 30� and secondary circulation occurs in a very small zone near
the bottom wall for u = 0� (Fig. 6). Due to enhanced strength of pri-
mary circulation, thermal mixing is found to be stronger near the
top portion of central regime. It is also observed that isotherms
along the walls are highly compressed and thickness of the thermal
boundary layer is reduced. The intensity of primary circulations for
Pr = 1000 is represented with jwjmax ¼ 12 for u = 45�, jwjmax ¼ 11:2
for u = 30� and jwjmax ¼ 10 for u = 0�. The enhanced thermal mixing
for Pr = 1000 is attributed with h � 0.7–0.8 for u = 45�, h � 0.7 for
u = 30� and h � 0.6–0.8 for u = 0� at central regimes of the cavities.
It may also be remarked that at higher Pr, the shapes of streamlines
are found almost trapezoidal near the walls especially for u P 30�

and that signifies enhanced mixing effects.

4.3. Isotherms and streamlines: linearly heated left wall with cold right
wall

Figs. 7–10 display the isotherms and streamlines for Da ¼
10�5—10�3; Ra ¼ 106 and Pr ¼ 0:026—1000. Due to uniformly
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Fig. 7. Isotherms and streamlines for linearly heated left vertical wall and cold right vert
u = 0�. Clockwise and anti-clockwise flows are shown via negative and positive signs of
heated bottom wall and cold right wall, the singularity appears
at the right bottom edge of the cavity. The formation of the thermal
boundary layer along the left wall of the cavity is weaker whereas
isotherms are pushed towards the right wall of the cavity forming
strong thermal boundary layer. The symmetric circulation pattern
which was observed for linearly heated side walls case is absent in
the present case due to non-symmetric thermal boundary condi-
tions. Streamlines closer to the top left wall show weaker circula-
tions whereas streamlines closer to the right wall show stronger
primary circulations. It may be noted that the uniformly heated
bottom wall and linearly heated left wall cause the fluid to move
with less circulation along the left wall whereas due to the cooled
right wall, larger amount of fluid flow down along the right wall. As
a result, strong circulation patterns are formed on the right side of
the cavity whereas weaker circulation patterns appear on the left
side of the cavity.

For Pr = 0.026 with Ra ¼ 106 and Da ¼ 10�5, the magnitude of
streamfunction is considerably smaller and the isotherms with
h 6 0.6 for u = 45�, h 6 0.5 for u = 30� and h 6 0:2 for u = 0� are
pushed towards the top corner of the left wall (see Fig. 7). The iso-
therms are found to be smooth and monotonic and the magnitudes
of streamfunction are small illustrating conduction dominant heat
transfer. As Da increases to 10�3, the strength of the secondary cir-
culation increases and the primary circulation cell was pushed to-
wards the right corner of the bottom wall (see Fig. 8). The critical
Rayleigh number for the conduction dominant mode is found as
Ra ¼ 4� 104 for all u’s. At Ra ¼ 106; Da ¼ 10�3 and Pr ¼ 0:026,
the isotherms with h 6 0.7 for u = 45�, h 6 0.6 for 30� and h 6 0.5
for u = 0� are compressed towards the right wall forming strong
thermal boundary layer whereas two other thermal boundary lay-
ers are formed at top and bottom portion of left walls (Fig. 8a–c). It
is observed that the intensity of circulation is large. Note that,
jwjmax is 14 for u = 45�, jwjmax is 14.2 for 30� and jwjmax is 15.2 for 0�.

Comparative features for various Prandtl numbers
ðPr ¼ 0:7 and Pr ¼ 1000Þ are shown in Figs. 9 and 10. Increase in
Pr does not show much significant change in qualitative trend of
streamlines and isotherms in the cavity except that the strength
of the circulation increases. It may be noted that jwjmax � 15:6 for
0.01

−0.01

0.13

−0.13−0.3

−0
.45

−0.5
8

STREAMFUNCTION, ψ

0.01

0.1

−0.01−0.1
−0.3

−0
.4

−0.53

0.01

−0.01
−0.08
−0.2

−0.3

−0.4

ical wall with Pr ¼ 0:026; Da ¼ 10�5 and Ra ¼ 106 for (a) u = 45�, (b) u = 30� and (c)
streamfunctions, respectively.



0.9

0.8

0.7

0.
70.60.5

0.4
0.3

0.6
0.50.4

0.3

a
TEMPERATURE, θ

5
0.5

−0.
5

−14

−5−11

STREAMFUNCTION, ψ

0.9

0.8

0.
7

0.60.5

0.4

0.6
0.50.4 0

.3

b
4.5

−14.2

2
−2−4.5−12

0.9
0.8

0.7

0.6

0.5
0.40.3 0

.2
0
1

0.50.4

0.30.
2

c
0.3 2.4 −0.3−2.4−11−14.3

−15.2

Fig. 8. Isotherms and streamlines for linearly heated left vertical wall and cold right vertical wall with Pr ¼ 0:026; Da ¼ 10�3 and Ra ¼ 106 for (a) u = 45�, (b) u = 30� and (c)
u = 0�. Clockwise and anti-clockwise flows are shown via negative and positive signs of streamfunctions, respectively.

0.9

0.8

0.
7 0.6 0.5 0.40.30.

2

0.60.5

0.4

a
TEMPERATURE, θ

−15.6

1

7
4 −1

−4
−7
−12

STREAMFUNCTION, ψ

0.9

0.8

0.
7 0.6

0.
60.5

0.4

0.5 0.40.3

0.
2

b 0.3

7

4 −0.3
−4−7

−11

−15.6

0.9

0.8 0
.70.60.5 0.4 0.30.2
0
1

0.5
0.4

0.3

c

6

0.4
3 −0.4−3−6

−12

−15.6

Fig. 9. Isotherms and streamlines for linearly heated left vertical wall and cold right vertical wall with Pr ¼ 0:7; Da ¼ 10�3 and Ra ¼ 106 for (a) u = 45�, (b) u = 30� and (c)
u = 0�. Clockwise and anti-clockwise flows are shown via negative and positive signs of streamfunctions, respectively.

T. Basak et al. / International Journal of Heat and Mass Transfer 52 (2009) 4135–4150 4143
all u’s with Pr ¼ 0:7 (see Fig. 9) whereas jwjmax � 17:8 for all u’s
with Pr = 1000 (see Fig. 10).

4.4. Heat transfer rates: local Nusselt numbers

4.4.1. Case I: linearly heated side walls
Fig. 11 displays the local heat transfer rates ðNub;NusÞ for

Pr ¼ 0:026 and Pr ¼ 1000 with Ra ¼ 106 and Da ¼ 10�5—10�3

involving various tilt angles ðuÞ. Due to the symmetry in the temper-
ature field, heat transfer at the bottom wall is symmetric with re-
spect to the midlength ðX ¼ 1=2Þ. Fig. 11a–c illustrates local
Nusselt number distribution at the bottom wall ðNubÞ for u = 45�,
30� and 0�, respectively. Due to linearly heated side walls, the heat
transfer rate, Nub, is 1 at the edges of the bottom wall. For
Da ¼ 10�5 with Pr = 0.026, due to less intensity of circulation, the
isotherms are almost parallel to the bottom wall for all tilt angles
as seen in Fig. 2. It is also observed that the zone of thermal stratifi-
cation or thermal gradient is largest for u = 0�. On the other hand, the
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thermal gradient is almost zero along the entire bottom wall espe-
cially for u = 45� and 30� at Pr = 1000. Similar to Pr ¼ 0:026, Nub is
largest for u = 0� for Pr = 1000. Overall, Nub for Pr = 1000 is lesser
than that for Pr = 0.026 for all tilt angles (see Fig. 11a–c). Common
to Pr = 0.026 and 1000, Nub exhibits a local minima at the center of
the bottom wall and that has maxima at the corner points of the bot-
tom wall. The convection starts playing a dominant role for
Da ¼ 10�4 with Pr = 0.026 and the isotherms are pushed towards
the side walls. It is interesting to observed that for Pr = 0.026, the
heat transfer rate, Nub, follows sinusoidal variation with its mini-
mum value at the center of the bottom wall and this trend is in accord
with sinusoidal variation of isotherms near the bottom wall. On the
other hand, for Pr = 1000, isotherms are highly compressed towards
side walls and they are highly dispersed near the bottom wall similar
to Da ¼ 10�5 and therefore qualitatively similar Nub distributions
are observed for Da ¼ 10�5 and 10�4 in presence of Pr = 1000 with
all tilt angles.

At Da ¼ 10�3, Nub is found to be larger than that
for Da ¼ 10�5 and 10�4 with both Pr (Pr = 0.026 and 1000). The
sinusoidal or non-monotonic variation of Nub distribution is also
observed for Da ¼ 10�3. It is interesting to observe that due to en-
hanced circulation, isotherms are largely compressed near the
middle portion of the bottom wall for Pr = 1000 with u = 45� and
30� (see Fig. 6a and b) and the magnitude of Nub is larger at the
middle portion for Pr = 1000 with u = 45� and 30�. On the other
hand, Nub for Pr = 0.026 is much larger than that for Pr = 1000 at
the middle portion of the bottom wall with u = 0�. The larger value
of Nub with Pr = 0.026 is due to large compression of isotherms
resulting from multiple circulations as seen in Fig. 4c whereas
the strength of multiple circulations near the bottom wall is smal-
ler for Pr = 1000 as seen in Fig. 6c.

Heat transfer rates for linearly heated side walls
at Da ¼ 10�5— 10�3; Ra ¼ 106 with Pr ¼ 0:026 and Pr ¼ 1000 are
illustrated in Fig. 11d–f for various tilt angles. Due to the symmetry
in the boundary condition, the local Nusselt number, Nus, is identical
along both the side walls. For Da ¼ 10�5 with Pr = 0.026, isotherms
are disperse and uniform and the heat transfer rate ðNusÞ is almost
zero up to Y = 0.7 and Nus is large near the top corner for all tilt angles.
It may be noted that Nus is larger for Pr = 1000 compared to
Pr = 0.026 due to more compressed isotherms towards the side walls
at Da ¼ 10�5 for all tilt angles. Due to stronger circulations, the heat
transfer rate ðNusÞ is larger for Da ¼ 10�4 with Pr = 0.026 near the top
corner than those with Da ¼ 10�5 for all tilt angles. The heat transfer
rate is even larger for Pr = 1000. Due to stronger circulations near the
top portion, the increasing trend of heat transfer rate is observed in
the upper half of the side walls at Da ¼ 10�3 for u = 45�, 30� and 0�. It
is interesting to note that Nus is quite large for Pr = 1000 compared to
Pr = 0.026 at 10�3 due to highly compressed isotherms near the top
portion of the side walls for all tilt angles (see Figs. 4 and 6). Due to
presence of a pair of symmetric secondary circulation cells with
clockwise and anti-clockwise rotations for u ¼ 0� and Da ¼ 10�3,
the heat transfer rate is non-monotonic in nature in the lower half
of the side walls, but the increasing trend of heat transfer rate is ob-
served in the upper half of the side walls. Local Nusselt number being
negative near the bottom portion of side walls implies that part of
the heat goes into the lower part of the wall for u = 45� and 30�
whereas for u = 0�, the local Nusselt number ðNusÞ is almost zero at
the bottom edge of the side wall due to isotherms parallel to the bot-
tom wall.

4.4.2. Case II: linearly heated left wall with cold right wall
Fig. 12 displays the local Nusselt numbers at the bottom, left

and right walls ðNub;Nul;NurÞ for Pr ¼ 0:026 and Pr ¼ 1000 with
Da ¼ 10�5—10�3 and Ra ¼ 106 for various tilt angles ðuÞ. For all
the cases, the isotherms near the bottom-edge of the cold right
wall are compressed due to the discontinuity present in the
right-edge resulting in high thermal gradient near the right-edge
of the bottom wall. The heat transfer rate ðNubÞ is 1 at the left-edge
of the bottom wall due to linearly heated left wall and that is max-
imum at the right-edge of the bottom wall due to the cold right
wall for all u’s (see Fig. 12a–c). It is observed that the local Nusselt
number ðNubÞ increases with the distance along the bottom wall,
but as Pr increases from 0.026 to 1000, local Nusselt number
ðNubÞ has lesser value due to less dense isotherms near the right
end of the bottom wall for Pr = 1000 at Da ¼ 10�5 with all tilt an-
gles. The heat transfer rate ðNubÞ is larger for Da ¼ 10�4 compared
to Da ¼ 10�5 due to increase of strength of circulations with
Pr = 0.026 and 1000. It may be noted that, the distribution of Nub

for Da ¼ 10�4 is almost invariant of Pr with all tilt angles
(Fig. 12a–c). Similar qualitative trend in Nub is observed for
Da ¼ 10�3. It is interesting to observe that enhanced anti-clockwise
primary circulation cell compresses isotherms near the left corner
of bottom wall for Pr = 1000 and Nub is larger near the left corner
for Pr = 1000.

Fig. 12d–f illustrates the heat transfer rate ðNulÞ for the left
wall. Fig. 12d and e shows that Nul is negative at the bottom edge
indicating the heat transfer occurs from fluid to the left wall for
u = 30� and 45�. But, for u = 0� (Fig. 12f) the heat transfer rate at
the bottom edge of the left wall is zero. An increasing trend in
Nul is observed from the bottom edge to the top edge of the left
wall for all tilt angles at Da ¼ 10�5—10�4. Local Nusselt number
Nul for Pr = 1000 is large compared to Pr = 0.026 due to largely
compressed isotherms towards the top edge of the left wall.
Due to the presence of secondary circulations near the left wall,
the local Nusselt number exhibits non-monotonic trend except
near the top edge at Da ¼ 10�3. Further, the secondary circulations
push isotherms at the top edge of the left wall leading to larger
temperature gradient which result in large local Nusselt number.
For u = 0� (Fig. 12f), the magnitude of heat transfer rate ðNulÞ is
large for Y P 0:75 with Da ¼ 10�3. This is due to presence of
strong circulations at top portion of left wall. As Pr increases from
0.026 to 1000, due to enhanced viscous effect, the intensity of
both primary and secondary circulations increases and isotherms
are highly compressed towards the top portion of left wall espe-
cially for u = 0�, Fig. 10. It is found that Nul for Pr = 1000 is found
to be large compared to Pr = 0.026 near the top edge of the left
wall with Da ¼ 10�3 and for all u’s.

Fig. 12g–i illustrates the local heat transfer rate ðNurÞ at the
right wall. Due to the singularities present in the thermal bound-
ary condition at the right corner of the bottom wall, the heat
transfer rate is maximum at the bottom edge of the right wall.
At Da ¼ 10�5, Nur is found to decrease continuously due to in-
crease in thermal boundary layer thickness towards top portion
of right wall with Pr ¼ 0:026 and Pr ¼ 1000 for all tilt angles.
At Da ¼ 10�4, Nur first decreases and that increases slightly for
Y P 0:2 due to compression of isotherms and thereafter Nur de-
creases due to large thickness of thermal boundary larger at the
top edge with Pr ¼ 0:026 and Pr ¼ 1000 for u = 45� and 30� ex-
cept for u = 0�, which correspond to increasing function of Nur

near the top edge. Similar qualitative trend of Nur is observed
for Da ¼ 10�3. It is also observed that Nur is large for Pr = 1000
compared to Pr = 0.026 due to high intensity of primary circula-
tions and highly compressed boundary layers thickness at top
portion of side wall for Da ¼ 10�3.

4.5. Overall heat transfer and average Nusselt numbers

4.5.1. Case I: linearly heated side walls
The overall effects upon the heat transfer rates are displayed in

Fig. 13a–d where the distributions of the average Nusselt number
of the bottom and side walls vs. the logarithmic Rayleigh number
are plotted. The average Nusselt numbers are obtained using Eqs.
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(14)–(16) where the integral is evaluated using Simpson’s 1/3 rule. It
is observed that at Da ¼ 10�5 with Pr = 0.026, the average Nusselt
number ðNubÞ is constant for the entire range of Ra with all tilt angles
and that signifies conduction dominant mode (see lower panel of
Fig. 13a). For Da ¼ 10�5 with Pr = 1000, Nub remains constant up to
Ra ¼ 8� 104 and thereafter that starts to decrease smoothly as very
small thermal gradient occurs near the central regime of the bottom
wall at higher Ra (see lower panel of Fig. 13b). It is observed that the
intensity of both primary and secondary cells increases at higher Ra,
and as a result, isotherms start to shift from bottom wall towards
side wall. Therefore, convection shows dominant mode of heat
transfer at high Ra for Pr ¼ 1000 and Da ¼ 10�5. The upper panels
for Fig. 13a and b represent Nub for Da ¼ 10�3. It is observed that
Nub remains constant up to Ra ¼ 6� 104 for Da ¼ 10�3 with
Pr ¼ 0:026 and Pr ¼ 1000 and thereafter that smoothly increases
with the increase of Rayleigh numbers especially for u = 45� and
30� (see upper panels of Fig. 13a and b). It is interesting to note that
Nub sharply increases at Ra ¼ 6� 105 for Pr = 0.026 whereas for
Pr = 1000, average Nusselt numbers decreases with Ra at
Ra P 6� 105 due to secondary circulations at u = 0� (upper panels
of Fig. 13a and b).

Fig. 13c and d displays Nus for Pr = 0.026 and 1000, respectively.
It is interesting to observe that the values of Nus along the side
walls are less compared to Nub. This is due to the fact that the heat
transfer to the fluid from the hot bottom wall is more compared to
that of linearly heated side wall. For Da ¼ 10�5 with Pr = 0.026, the
average Nusselt number is constant irrespective of Ra for all tilt an-
gles, illustrating conduction dominant mode (see lower panel of
Fig. 13c). For Da ¼ 10�5 with Pr = 1000, the average Nusselt num-
ber remains constant up to Ra ¼ 8� 104 and that increases
smoothly due to large compression of isotherms towards side wall
as Ra increases (see lower panel of Fig. 13d). It is observed that at
Da ¼ 10�3, the average Nusselt number for side wall remains con-
stant up to Ra ¼ 105 for both Pr = 0.026 and 1000 and thereafter
that increases with the increase of Ra for all tilt angles (upper pan-
els of Fig. 13c and d). Similar to bottom wall, the influence of the
Rayleigh number on the average Nusselt number becomes more
significant at higher Darcy number as seen in the upper panel of
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Fig. 13c and d. It is interesting to observe that the monotonic
increasing trend of Nus is not observed for u = 0� at higher Ra
and similar trend also has been observed for the bottom wall.
Therefore, power law correlations for Nub and Nus are not
obtained.

4.5.2. Case II: linearly heated left wall with cold right wall
The overall effects of Ra, Da and Pr on the average Nusselt num-

bers at the bottom, left and right walls are displayed in Fig. 14a–d.
At Da ¼ 10�5 with Pr = 0.026 the average Nusselt numbers at the
bottom wall remain constant for entire Ra range indicating con-
duction dominant mode for all tilt angles (see lower panel of
Fig. 14a). For Da ¼ 10�5 with Pr = 1000, Nub remains constant up
to Ra ¼ 105 and thereafter that starts to decrease slightly as the
isotherms near the left wall are pulled up due to strong secondary
circulation for all tilt angles at higher Ra (see lower panel of
Fig. 14b). At Da ¼ 10�3, the average Nusselt numbers for bottom
wall remain constant up to Ra ¼ 2� 104, thereafter Nub smoothly
increases with Ra for all u with Pr = 0.026 and 1000 (see upper pan-
els of Fig. 14a and b).

The average Nusselt numbers for the side walls remain almost
constant up to Ra ¼ 106 indicating conduction dominant mode
for all tilt angles (see lower panel of Fig. 14c) with
Da ¼ 10�5 and Pr ¼ 0:026. But, For Da ¼ 10�5 with Pr = 1000, the
average Nusselt numbers at the side walls remain almost constant
up to Ra ¼ 5� 105, thereafter that increases smoothly for all tilt
angles due to larger compression of isotherms near side walls. It
is observed that Nul increases sharply with Ra for u 6 30� for
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Pr = 0.026 and 1000 (see upper panel of Fig. 14c and d). The sharp
increase of Nul is due to large compression of isotherms near the
top portion of the left wall due to secondary circulations. The inset
of Fig. 14c and d displays the variation of average Nusselt number
of right wall ðNurÞ. It is observed that Nur remains constant up to
Ra ¼ 4� 104 for u = 45�, 30� and 0� then increases smoothly with
Rayleigh number for all u at Da ¼ 10�3 due to larger compression
of isotherms caused by a primary circulation cell. It is interesting
to observe that the magnitude of Nur is larger than those of Nul

for all range of Ra, Pr and Da as the entire cold right wall receives
large amount of heat at steady state.

5. Conclusion

The effect of linearly heated side wall(s) and uniformly heated
bottom wall on flow and heat transfer characteristics due to nat-
ural convection in porous medium within the trapezoidal enclo-
sure have been studied in details. The momentum transfer in
the porous region is modeled using Darcy–Forchheimer principle
with Forchheimer inertia term being neglected. The penalty finite
element method is used to obtain smooth solutions in terms of
streamlines and isotherms for a wide ranges of Pr, Ra and Da.
Numerical simulations are performed for various values of Ray-
leigh, Prandtl and Darcy numbers ð103

6 Ra 6 106; 0:026 6 Pr
6 1000 and 10�5

6 Da 6 10�3Þ and side wall inclination angles
(u = 45�, 30� and 0�). During conduction dominant heat transfer,
variation of tilt angles from u = 45� to u = 0� has less significance.
Stronger convection is observed for u = 45�, 30� than that for
u = 0� with Pr ¼ 0:026; Ra ¼ 106 and Da ¼ 10�3. The secondary
circulations are observed near the bottom corner for u = 30�
and 0� with linearly heated side walls. In contrast, stronger circu-
lations are observed near the top portion of the left wall with
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linearly heated left wall and cold right wall. As Pr increases from
0.026 to 1000, the circulations become stronger which results in
larger compression of isotherms near various regimes of the
walls.

It is observed that the heat transfer rate ðNubÞ, for Pr = 1000 is
less compared to Pr = 0.026 at Da ¼ 10�5 for all tilt angles. But,
for Da ¼ 10�4 with Pr = 0.026, convection starts playing a dominant
role showing non-monotonic variation of Nub with minimum value
at center whereas for Pr = 1000 with Da ¼ 10�4, Nub is found to be
similar to that with Da ¼ 10�5. It is interesting to note that for
Da ¼ 10�3, sinusoidal variation in Nub is observed with large values
than those at Da ¼ 10�5 and 10�4. It is observed that Nub for
Pr = 1000 is larger than that for Pr = 0.026 at u = 45� and 30� but
for u ¼ 0�, Nub with Pr = 0.026 is larger due to large compression
of isotherms resulting from multiple circulations. Due to stronger
circulations near the top portion, the increasing trend of heat
transfer rate ðNusÞ is observed in the upper half of the side walls
at Da ¼ 10�3 than that at Da ¼ 10�5 and 10�4 for all tilt angles. It
is observed that Nus is larger for Pr = 1000 compared to
Pr = 0.026 at Da ¼ 10�3 due to highly compressed isotherms near
the top portion of the side walls for all tilt angles.

Interesting heat transfer characteristics are also observed for
linearly heated left wall and cold right wall. The local Nusselt num-
ber ðNubÞ increases with the distance along the bottom wall. As Da
increases to 10�3, Nub also increases due to increase in strength of
circulations for Pr = 0.026 and 1000. An increasing trend in Nul is
observed from the bottom edge to the top edge of the left wall
for all tilt angles at Da ¼ 10�5—10�4. Due to the presence of sec-
ondary circulations near the left wall, the local Nusselt number
exhibits non-monotonic trend except near the top edge at
Da ¼ 10�3. Overall, Nul for Pr = 1000 is found to be larger compared
to Pr = 0.026 with all Darcy number for all u’s. Due to the singular-
ities present in the thermal boundary condition at the right corner
of the bottom wall, the heat transfer rate is maximum at the bot-
tom edge of the right wall. At Da ¼ 10�5, Nur is found to decrease
continuously due to increase in thermal boundary layer thickness
towards top portion of right wall with Pr ¼ 0:026 and Pr ¼ 1000
for all tilt angles. But for Da ¼ 10�4—10�3, Nur first decreases and
that increases slightly for Y P 0:2 and thereafter Nur decreases
with Pr ¼ 0:026 and Pr ¼ 1000 for u = 45� and 30� except for
u = 0�, which correspond to increasing function of Nur.

It is observed that average Nusselt number ðNubÞ sharply de-
creases at higher Ra for Pr ¼ 1000 and Da ¼ 10�5 with linearly
heated side walls, but Nub slowly decreases at higher Ra with
Da ¼ 10�5 due to linearly heated left wall for all tilt angles. For
all other cases, average Nusselt number is a monotonically increas-
ing function of Ra especially for higher Da ðDa P 10�4Þ except with
some cases for u = 0� due to linearly heated side walls.
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